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We consider a supersaturated vapor in a closed and finite system. The conditions for the existence of 
a stable droplet of the liquid phase in this system are in principle determined by the thermodynamic 
parameters (N, V, T). It is shown that in deviation from the nucleation theory of infinite systems the 
nucleation in finite systems occurs in a smaller region of thermodynamic values. We investigate critical 
values of this parameters, e.g., the critical system size, the critical overall particle number, and the critical 
temperature, where it becomes impossible for a stable droplet to exist in the finite system. The critical 
parameters are discussed in terms of the initial supersaturation. © 1987 Academic Press, Inc. 

1. INTRODUCTION 

The behavior of  systems which can initiate 
a phase transition is mainly determined by 
thermodynamic constraints like temperature, 
volume, pressure, and particle density. Thus, 
as is well known growing droplets may  be de- 
veloped in infinite systems under isobaric 
conditions for a fixed region of thermody- 
namic parameters only (1). Nucleation is pos- 
sible if the pressure is larger than the equilib- 
r ium pressure p~  defined by the Maxwell rule. 
We consider a supersaturated vapor in a finite 
thermodynamic system with a fixed particle 
number.  The phase transition is assumed to 
be proceeded by the formation of a single 
droplet which is surrounded by the free par- 
ticles of  the vapor. 

We note the simplicity of  this supposed ki- 
netic ansatz. In fact a cluster distribution 
which evolves due to a stochastic process is 
established (6). But in this paper we are mainly 
interested in critical values of  the nucleation 
process which can be described sufficiently by 
the given model. 

A thermodynamic analysis of  the establish- 
ment  of  droplets in the initially metastable va- 
por can lead to a deeper insight into the late 
stage of this process (2, 3). In particular it gives 
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results for the existence of stable droplets in 
principle (4). In this paper the investigations 
are based on the consideration of a Markovian 
process for the growth and decay of the drop- 
let. The condition for the existence of a stable 
droplet is found from the modality of  its equi- 
librium probability distribution. Distributions 
with two maxima (bimodal) in the space of 
the spatial range of  the droplet describe situ- 
ations where the equilibrium state of  the sys- 
tem is attainable by a nucleation process and 
a stable droplet is found. The conditions of  
bimodal distributions are given as dependent 
on the thermodynamic  parameters. Therefore 
we find critical values of  the system volume, 
the particle number,  and the temperature for 
the existence of a stable droplet in finite sys- 
tems. 

We obtain a critical upper temperature de- 
pendent on the system size which is lower than 
the critical temperature for an infinite system. 

It turns out in our investigations that the 
region for the nucleation process depends 
strongly on the system size. This region lessens 
for finite systems. 

The critical parameters are discussed in 
terms of the initial supersaturation of the finite 
system where critical values are found. 
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2. KINETIC DESCRIPTION OF THE DROPLET 
EVOLUTION AND EQUILIBRIUM 

DISTRIBUTION 

We consider a closed system with N free 
particles an ideal gas mixture in a finite volume 
Vat temperature T. The thermodynamic con- 
straints 

N=const ,  V=const,  T=cons t  [1] 

are chosen in such a way that the pressure of 
the supposed ideal vapor 

P = N kBT [2] 

is larger than the equilibrium pressure poo(T) 
of the saturated vapor coexisting with the 
planar interface of the liquid phase. That 
means that the system is in a supersaturated 
state. We define the initial supersaturation y 
as 

p NkBT 
y = - . [3] 

Po~ Poo V 

To reach the equilibrium state the supersat- 
urated system will be able to initiate a first- 
order phase transition. In a certain region of 
the supersaturation the initial state is a meta- 
stable one and the phase separation takes place 
by a nucleation process. We suppose that a 
single droplet forms in the system and evolves 
due to the kinetic mechanism 

W + 

At+ Al ~ At+l, [4] 

where l is the number of particles bound in 
the droplet (l < N). Because of the limitation 
of the fixed overall particle number, the num- 
ber of free particles changes with the given 
process. The droplet evolution [4] is assumed 
to be a Markovian birth and death process. If  
we define P(/, t) to be the probability to find 
the droplet with l particles at time t, then the 
following master equation for the growth and 
decay of the droplet is found, 

0 
Ot P(l, t) 

= w+(1 - 1)P(/-  1, t)+ w-( l+ 1)P(I+ 1, t) 

- [w+( l )  + w-(l)]P(l, t), [5] 

where w ÷ and w- are the transition probabil- 
ities per unit t ime as  also introduced in [4]. 
We define them as (5, 6) 

growth: 

l--~l+ 1: w+(l)=al  2 / 3 N - I  [6.1] 
V 

decay: l--~ l -  1: 

a l2 /3~ ;3ex r~ f - f - ' /  w-(l) = P ~ ] '  [6.2] 

where X1 is the de Broglie wavelength of a free 
particle: ~1 = h(2rmtkBT)-~/2; a is a constant 
with respect to the special properties of  the 
droplet like the liquid density c~ [particles/m3], 
the surface tension a, the temperature, and 
the sticking coefficient. Equation [6.1] gives 
that the probability of an attachment of a free 
particle from the vapor to the droplet of size 
l increases with the surface of the droplet 
(~12/3) and with the density of the free parti- 
cles. The term (N - l) includes the finiteness 
of the system caused by the limitation of the 
overall particle number. The probability of the 
evaporation of a free particle from the droplet 
given by Eq. [6.2] is also determined by the 
surface of the droplet and further by an ex- 
ponential term which contains the change of 
a potential function J~ defined by (6) 

f = - A I  + BI 2/3. [7] 

This expression is valid only for large droplets. 
The constant A corresponds to the binding 
energy of a particle in the droplet and  can be 
estimated from the molar evaporation heat. 
Later it is approximated from expressions for 
the stable droplet size. The second term of Eq. 
[7] is proportional to the surface area and the 
surface tension of the droplet. It reads 

B = 47ra(4~rc~/3) -z/3. [8] 

Computer simulations with the given transi- 
tion probabilities demonstrate t he  several 
stages of the stochastic evolution of the droplet 
during the phase transition (7, 8). In this paper 
we are interested only in the equilibrium 
probability distribution P°(1). It follows from 
the condition of  detailed balance that 
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P(I, t)w+(l)= P(I+ 1, t)w-(l) [9] 

which is an inherent property of the assumed 
transition probabilities. 
We find for P°(l) 

1 
eo( l )=eNI -  [ w+(j - l) [10] 

j = 2  w - ( j )  

with the normalization 

,,=1 n= j=2 w(7) ) 
We underline that P°(I) is the equilibrium 
probability distribution to find the droplet with 
l particles. It contains the main information 
concerning the stability of the droplet. 

Due to the thermodynamic parameters, 
P°(l) can be a bimodal  or a unimodal distri- 
bution. The maxima of P°(l) define the stable 
equilibrium states. A maximum of P°(l) in the 
range of large l characterizes the existence of 
a stable droplet in the system, while a maxi- 
mum in the range of small l (l ~</o;/o is of 
molecular range order) means that the droplet 
has with a certain probability such a minor 
size that it is considered to be a part of the 
vapor. 

IfP°(l) is a bimodal distribution, transitions 
between the two stable states are possible (7, 
8). The maxima are separated by a minimum 
of P°(l) that is relative to the critical droplet 
size caused by the nucleation barrier for the 
formation of the critical surface of the droplet. 

Figure 1 shows P°(l) dependent on the ther- 
modynamic constraints. If the only maximum 
of P°(l) exists for the state l = 1 no stable 
droplet can be found (Fig. l a). To expect a 
stable droplet in the system we are therefore 
interested in a maximum of P°(/) for large l. 

3. CONDITION FOR THE STABLE EXISTENCE 
OF A DROPLET 

The extremum condition for the equilib- 
rium probability distribution can be written 
approximately a s  

p0(lE) = pO(lE + 1). [ 1 1 ] 

P°(L~*IO0 
IO0 

(a) 
SO. 

20  

10 

5= 

2 

1 

0.5 

0.2 

0.1 

(b) 

12 50 ?O 90 

(c) 

8O1OO 

ii111/1! 
711 80 110 

FIG, 1. Equilibrium distribution P°(I) of  the droplet for 
various values of the system volume V or the initial su- 
persaturation y, respectively. The maximum states are rel- 
ative to the stable states of the droplet. A large stable droplet 
is found only for larger supersaturations. The first maxi- 
mum of (c) and (d) is smaller than 0.1 but has not vanished 
yet. Vapor: ethanol, T = 290 K, N = 150. (a) V = 2.75 
X 10 -23 m3; y = 3.86. (b) V = 2.5 × 10 -23 m3; y = 4.63. 
(c) V = 2.25 × 10 -23 m3; y = 5.15. (d) V = 2.0 × 10 -23 
m3; y = 5.79. 

With the condition of detailed balance [9] we 
get the extremum condition 

w+(l E) = w-(l E + 1 ). [ 121 

With Eq. [6] it results in 

[ l E \2/3 TN--IE , , . ~ .  
l n ( ~ - ~ )  + In X 3 = ( J~E+I- - J~E) ,  

[131 

The first term of Eq. [ 13] is small and can be 
neglected except for very small clusters. The 
right-hand side ofEq. [ 13] is transformed into 

05+, -05 
= - A  + B((l+ 1) 2/3 - l 2/3) ~ - A  + ~B1-1/3. 

Thus we get 

N-- lE 3 A 2 kB T ln__ .p__Xl+kBT=~__( /E) - I /3 .  [141 

If instead of the bound particle number l the 
radius of the droplet is introduced, 

r 3 = (-~C~)-II, [15]  
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then Eq. [14] leads to 

In N -  (4~r/3)c, raE X3 A 1 , [16] 
v 

where do is the capillary length: do = 2a 
× (c.kBT) -1. Now we must determine the 
constant A in such a way that in the limit of 
large droplets Eq. [ 16] must agree for the stable 
droplet radius with the Kelvin equation (10), 
well known from equilibrium thermodynam- 
ics: 

In p(r) = do 1 .  [17] 
p~ r 

Equation [17] gives a relation between the 
equilibrium pressure p(r) above a curvated 
surface and the curvature of this surface for 
small departures from planarity. In the case 
considered the equilibrium pressure for the 
vapor coexisting with the stable droplet is given 
by 

p(rs) = N -  ( 47r/3)c~r 3 kBT, 
V 

where rs is the radius of the stable droplet. Thus 
it follows that 

A =-kBTln  p~ ~3 [18] kBT 1. 

Inserting A in Eq. [16] the extremum condi- 
tion reads 

1 [19] In (N-(47r/3)c~r3)kBT = do--. 
po~ V rE 

Thus we obtain a relation between our kinetic 
ansatz [6] and the equilibrium thermodynam- 
ics in the limit of  large droplets. 

A truncated Taylor expansion of  the loga- 
rithm in Eq. [19] leads to 

r 4 + RrE + S = 0 [20] 
with 

, NkBT[4~r )-~ 
R = - J V , n p - - - ~ - ~ - c ~ ,  < 0  

S= Ndo(?  c~) -1 >0 .  [21] 

Equation [20] possesses only two positive so- 
lutions dependent on the thermodynamic pa- 

rameters (11) and gives the extremum droplet 
sizes. The smaller value of rE corresponds to 
the critical droplet size, the greater value to 
the stable droplet size, respectively. Figure 2 
shows the two solutions of  Eq. [20] dependent 
on the system size. 

Two solutions of Eq. [20] can be observed 
only if the inequality holds: 

R / 4  ( S ~  3 
~-] - k~ ] > 0 .  [221 

It is a condition to find a stable droplet in the 
system. When both solutions coincide the sta- 
ble droplet loses its stability and becomes part 
of the vapor. By the equality of  [22] 

the second maximum of  the probability dis- 
tribution vanishes. This case defines the critical 
thermodynamic parameters for the existence 
of  a stable droplet. 

4. DETERMINATION OF THE CRITICAL 
THERMODYNAMIC PARAMETERS 

Equation [23] allows the investigation of  the 
critical values Nc, Vc, and To. We get the re- 
lation 

N ( l n N k T I 4 = e ( ? c . ) ( ; d o )  3. [24] 
pooV} 

1 (b) 
(a) 

5 

2 

0J 

FIG. 2. Solutions of Eq. [20] dependent on the system 
volume V. rE is the extremum droplet size. The smaller 
value of rE corresponds to the critical droplet size, the 
greater value to the stable droplet size. Vapor: Ethanol, 
N/V = 4 × 1024 m -3. (a) T = 280 K. (b) T = 290 K. (c) 
T = 300 K. 
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Let us first discuss this condition for a given 
temperature T = const. For a given system 
size V, a critical overall particle number Nc 
results from Eq. [24] which must at least exist 
in the system to find a stable droplet in it. 

For a given value of N w e  get a critical vol- 
ume V~ of  the system which does not permit 
it to cross over when expecting a stable droplet 
state. The critical values Arc and Vc are repre- 
sented in Fig. 3, which gives for T = const the 
region of the thermodynamic parameters N 
and V where a nucleation process in a finite 
system may lead to an overcritical droplet. 
This is the bistable region of the system; out- 
side this region of the N, V, T space the initial 
vapor phase is the only stable state of  the sys- 
tem. In a second point of discussion of the 
critical parameters we want to consider the 
relation between the critical temperature Tc 
and the system size V. T~ is that temperature 
where for given parameters N and V the co- 
existence between droplet phase and vapor 
phase vanishes because a stable droplet is not 
able to exist. That  is why T¢ is the limiting 
upper temperature for a possible phase sepa- 
ration. It is implicitly defined by Eq. [24], but 
we must take into account that the equilibrium 
pressure po~, the surface tension ~, and the 
particle density ca in the droplet depend on 

c 
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2. 

lo - /  

• v[~3] 

FIG. 3. Critical overall particle number Arc versus system 
volume V. Only for N > Nc is a coexistence of the droplet 
in the vapor possible. The dashed-dotted line gives the 
saturation particle number No = p~V/kBT. Vapor: ethanol, 
T = 280 K. 

(c) 
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29ff 
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• V(m 3) 

FIG. 4. Critical temperature T¢ versus system volume 
V. If T > Tc the binodal region of  the finite system is left 
and no nucleation can be obtained. Tc is plotted for various 
overall particle densities. (a) N/V = 2 X 1024 m -3. (b) N~ 
V = 4 X 1024 m -3. (c) N/V = 8 X 1024 m -3. Vapor: ethanol. 

the temperature, too. For numerical calcula- 
tions and also to receive the given figures, we 
use well-confirmed temperature dependences 
for these parameters (12). 

For an analytical result we set ~ = const 
and c~ = const in a first approximation. The 
temperature dependence of  p~ can be esti- 
mated in a simple way by van't  Hoff's law, 

with 

p~(T) = p ° e x p ( - + q )  [251 

const  

where q is the evaporation heat per particle 
and is assumed to be constant. With the ansatz 
[25] we get from Eq. [24] a differential equa- 
tion for the change of the critical temperature 
Tc with varying system size V, where Vc is 
given by Eq. [24]: 

dTc_TcI1 4 }-1 
dV V~ [ ln(Nk~-~/pO V) . [26] 

For the metastable region the term in brackets 
is greater than zero. Thus the critical temper- 
ature of a finite system becomes smaller than 
the critical temperature of  an infinite system. 
A decrease in the system size leads to a dim- 
inution of  the critical temperature which gives 
the upper limit for a stable phase separation 
by nucleation. In Fig. 4 the critical temperature 
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FIG. 5. Critical supersaturation Yc versus system volume 
V. For y < yc an overcritical droplet cannot be established. 
(a) T = 280 K. (b) T = 312.15 K. Vapor. ethanol. 

Tc is calculated by means of Eq. [24] depen- 
dent on the system size. Asymptotically Tc 
must tend to the critical temperature for mac- 
roscopic systems. As is shown in Fig. 2 and 
pointed out in former investigations (3), a de- 
crease in the volume of the system leads to a 
decrease in the size of the stable droplet. Thus 
a relation between a decreasing volume of the 
stable droplet and a decreasing critical tem- 
perature exists that can be noted to be in 
agreement with molecular dynamics simula- 
tions of small drops (see, e.g. (13, 14)). 

5. DISCUSSION 

The existence of critical thermodynamic 
parameters for the nucleation in finite systems 
should have practical importance in phase 
transitions in small systems, particularly in 
porous media. The finite size effects discussed 

in Section 4 can be summarized by a discus- 
sion of the supersaturation y defined by Eq. 
[3]. From Eq. [24], a critical supersaturation 
yo follows for the initial system: 

[ [(41r13)c,~1/414 . ~3/4] 
Y°=exPt~ N/4 ) [-~ao) J. [27] 

For the initial supersaturation y < Yc the sys- 
tem possesses only one stable state, which is 
the vapor phase. No overcritical droplet can 
be formed because the pressure of the system 
decreases faster than the droplet reaches the 
overcritical size, due to the attachment of free 
particles by the droplet. This effect is caused 
by the finiteness of the system. 

For y > yc it is possible for a stable droplet 
to exist. That means that y~ must be reached 
at least initially to insert the nucleation process 
in the finite system (see Fig. 5). 

For y = y¢, Eq. [23] is held and the critical 
and the stable droplet sizes coincide. In this 
case the droplet is not really stable; as pointed 
out in thermodynamic investigations (4; 15) 
we obtain a saddle point-type state. 

It is seen in Fig. 1 that with an increasing 
supersaturation the equilibrium probability to 
find a stable droplet with a large size is also 
increasing. In fact the probability to find the 
droplet as a part of the vapor diminishes. For 
a big supersaturation this probability vanishes. 
Thermodynamically it means that for this su- 
persaturation the nucleation barrier disappears 
and a critical droplet size does not exist. In 
this case the nucleation process is converting 
into a spinodal decomposition, which means 

(o) (b) 

)~ ~ tCr t s t 'N  t 

(¢) 
~0 

N t 

FIG. 6. Schematic plot of the equilibrium probability distribution P°(I) dependent on the initial super- 

saturation y. (a) y < Yc. (b) yc < y < y~. (c) y > y~. 
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r0 

Yc Ysd "Y 

FIG: 7. Stable and critical droplet radius as a function 
of the initial supersaturation (schematic plot). A phase 
transition by nucleation occurs only in the range Yc < Y 
<y~.  

in our consideration that the droplet reaches 
its stable spatial range explosively fast. 

We can estimate this critical value of the 
supersaturation by means of the extremum 
condition Eq, [19]. We assume in this case 
that the critical droplet radius is of molecular 
size ro. Thus it holds that N -  (4~r/3)c~r 3 .~ N .  

In a raw approximation we get the supersat- 
uration for the conversion into spinodal de- 
composition: 

y~ ~ eXP(r~). [28] 

Let us note again that in the case of big su- 
persaturations the kinetics of phase transition 
may be quite different from the given model. 
But we are interested in Y~d only to discuss 
approximately the range of bistable behavior 
of the system. 

The results o f  Section 5 are concluded in 
Figs. 6 and 7. There the shape of the equilib- 
rium distribution is plotted dependent on the 
initial supersaturation (Fig. 6). It shows clearly 
the close relation between the thermodynamic 
parameters and the existence of a stable vapor 
or a stable droplet. 

In Fig. 7 we show the extremal values of 
the probability distribution dependent on the 

initial supersaturation. The bistability of the 
considered system for Yc < Y < Ysd is demon- 
strated. The phase transition by a nucleation 
process takes place only for a supersaturation 
between yc and Y~d- 
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